1657 RLC Digibridge®

Instruction Manual

Foun 1657-0120-07/B1

®QuadTech, Inc., 1992
5 Clock Tower Place, 210 East
Maynard, Massachusetts, U.S.A. 01754
January, 1997

Tel. 978-461-2100 800-253-1230 (Sales) 800-253-1230 (Service) Fax. 978-461-4295

The material in this manual is for informational purposes only and is subject to change, without notice. QuadTech assumes no responsibility for any error or for consequential damages that may result from the misinterpretation of any procedures in this publication.

Contents

Instruction Manual Changes Specifications Warranty Introduction -Section 1 Installation -Section 2 Operation -Section 3 Theory -Section 4 Service and Maintenance -Section 5 Parts Lists and Diagrams -Section 6 oduct will be marked with this symbol (ISO#3684) when it is necessary for the user to refer

to the instruction manual in order to prevent injury or equipment damage.

Instruction Manual Changes

These two supplementary pages contain information of improvements or modifications not documented in the current manual. All references to GenRad in the manual now apply to QuadTech, Inc.

Page -Specifications (Power & Mechanical)

Power should be 90 -250V AC, 50 -60 Hz. Voltage switching is automatic and no longer selected by rear panel switch. 60 Watts maximum.

Weight should be 10 lbs. (4.5 kg) net, 15 lbs. (6.8 kg) shipping.

Environment reads, Altitude < 2000m, Installation Category 1, Pollution Degree 1 Page - Table of Contents (Parts List and Diagrams -Section 6)

Power supply board (1657-4720) layout and diagram (page 6-13) replaced by Power supply assembly part number 700011 (no diagrams, repair by module exchange)

Page 1-4 -Figure 1-2, Rear Panel Controls and Connectors Rear view should show new power supply assembly (PN 700011) without line-voltage switch.

Page 1-4 -Table 1-2, Rear Panel Connectors and Controls

Ref No. 2R -& Fuse is 6/10A, 250V, 3AG Type, Slow Blow. Replace only with the same type and rating. To replace, remove fuse drawer by pressing up on release tab. Ref No. 3R -Line-voltage switch has been deleted, power input is from 90 -250V AC Page 1-4 -Table 1-3, Accessories

A quantity of two spare fuses are supplied, 6/10A, 250V, 3AG Type, Slow Blow (QuadTech part number 5330-1100)

Page 2-1 -Safety Inspection

Before operating the instrument inspect the power inlet module on the rear of the unit to

ensure that the **properly rated fuse is in place**, otherwise damage to unit is possible. Fuse is 6/10A, 250V, 3AG Type, Slow Blow.

The 1657 is shipped with a standard U.S. power cord, QuadTech PN 4200-0300 (with Belden SPH-386 socket or equivalent, and 3 wire plug conforming to IEC 320) or an approved international cord set. Make sure the instrument is only used with these or other approved international cord sets, which ensures the instrument is provided with connection to protective earth ground.

In all installations the instrument should be positioned with consideration for ample air flow to the side and rear panel ventilation holes. An open space around the instrument of at least 3 inches (75mm) is recommend. The surrounding environment should be free from excessive dust to prevent contatnination of electronic circuits.

Instruction Manual Changes (continued)

WARNING

If this instrument is used in a manner not specified in this manual protection to the operator and equipment may be impaired.

Page 2-1 -Power-Line Connection Power line switch for 115V or 230V operation has been removed, switching is automatic for voltages between 90 -250V AC. Page 2-2 -Figure 2-2 Figure 2-2 does not apply. Only certified line cords which comply with IEC 227 or IEC 245 should be used. Page 3-2 -Paragraph 3.1 Basic Procedure, step a Power line switch for 115V or 230V operation has been removed, switching is automatic. Page 5-1 -Paragraph 5.2, Instrument Return Contacts for QuadTech are: Sales 800-253-1230 Service 800-253-1230 Technical Assistance 978-461-2100 Page 5-2 & Page 5-3 -Caution Note Power line switch for 115V or 230V operation has been removed, switching is automatic. Page 5-7 -& Paragraph 5.6.1 & Figure 5-3, Disassembly Power Supply Assembly shown has been replaced by Power Supply Assembly PN 700011. Page 5-10 -Instrument Cleaning Instructions Monthly (more or less depending on usage) the built-in test fixture should be cleaned with a soft brush and isopropyl alcohol. Avoid getting excess alcohol on instrument paint surfaces, otherwise damage to the finish can result. For additional instrument cleaning instructions refer to paragraph 5.7.1 (Care of the Test Fixture) and paragraph 5.7,2 (Care of the Display Panel). Power Supply Assembly shown in Figure 5-8 has been replaced by Power Supply Assembly PN 700011. Page 5-12 - Paragraph 5.8.2, Power Supply Trouble Analysis procedure does not apply to new Power Supply Assembly P/N 700011. Page 6-2 - Figure 6-2, Rear View Rear view should show new power supply (PN 700011) without line-voltage switch Page 6-3 - Mechanical Parts List, Rear Items 1 - 4 (power connector, fuse extractor post, line voltage switch & cover) deleted on new assembly Page 6-12 & Page 6-13 - Parts and Diagrams Power Supply Board and Parts List shown, PN 1657-4720 has been replaced by Power Supply Assembly, PN 700011. The 700011 Assembly must be repaired by module exchange.

Specifications

Measurement Mode: Measures R series or parallel; L and Q series or parallel; C and D series or parallel. All measurement modes are pushbutton selectable.

Displays: LED-type numerical display with automatically positioned decimal points and illumination of units. For R LC, five digits (99999) and simultaneously for DQ, four digits (9999).

Measurement Speed: Greater than 3 measurements per second.

Test frequencies: Pushbutton selection between 2. Accuracy re panel legends: +2%, -.01%. Actual frequencies: for 1657-9700, 1020.0 Hz +/- .01% (panel legend "1 kHz") and 120.00 Hz +/- .01%; for 1657.9800,1000.0 and 100.00 Hz +/- .01%.

Applied Voltage: 0.3 V rms maximum.

Ranges: Pushbutton selection with automatic front-panel guidance. Three basic ranges (best accuracy, see table) of 2 decades each, for each parameter. Automatic extensions to min and max, as tabulated.

Parameter	Minimum	Basic ranges	Maximum					
R; 120 Hz*	00.00 1 Ω	2 Ω to 2 MΩ	99.999 MA					
R; 1 kHz	00.00 1 Ω	2 Ω to 2 MΩ	9.9999 MA					
L; 1 kHz	0.0001 mH	0.2 mH to 200 H	999.99 Н					
L; 120 Hz*	00.001 mH	2 mH to 2000 H	9999.9 Н					
C; 1 kHz	0.0001 nF	0.2 nF to 200 μF	999.99 μF					
C; 120 Hz*	00.001 nF	2 nF to 2000 μF	99999 μF					
D (with C)	.0001	(fully automatic)	9.999					
Q (with L)	00.01	(fully automatic)	999.9					

*120 Hz or 100 Hz, depending on the instrument.

Accuracy: For R, L, and C: +/- 0.2% of reading in basic ranges, if quadrature component is small (D < 0.1, Q > 10, etc). See table. D accuracy: +/- .001 in basic ranges, for D < 0.1 (otherwise, see table). Q accuracy: +/-.01 in basic ranges, for Q < 1(otherwise, see table).

•		Basic accuracy					
Parameter	Low extension	Basic ranges	High extension	factor			
R; either frequency	±[4mΩ,	0.2% of rdg,	$(R/10~M\Omega)\%$ of rdg] (1 + Q)			
L: 1 kHz	±[0.4 μH,	0.2% of rdg,	(L/1000 H)% of rdg	{ (1 + 1/Q)			
L; 120 Hz*	±[4μH,	0.2% of rdg,	(L/10 kH)% of rdg	j (1 + 1/Q)			
C; 1 kHz	±[0.4 pF**,	0.2% of rdg,	(C/1000 µF)% of rdg] (1 + D)			
C; 120 Hz*	±[4pF**,	0.2% of rdg,	(C/.01 F)% of rdg	j (1 + D)			
D (with C)	±[.001 + 0.2 (1 + D)%	of rdg) K [†]) K [†]			
Q (with L)	±[.01 + 0.2 (1 + Q)%	of rdg] Κ ^τ			

*120 Hz or 100 Hz. ** Fixed offset "zero" capacitance is < 1.5 pF.

[†]K = (LC basic accuracy as % of rdg) / 0.2%. Therefore, K = 1 on basic ranges.

Environment: TEMPERATURE: 0° to 50°C operating, -40° to +75°C storage. HUMIDITY: 0 to 85% R.H., operating.

Supplied: Power cord, axial-lead adaptors, instruction manual.

Power: 90 to 125 or 180 to 250 V, 50 to 60 Hz. Voltage selected	
by rear-panel switch. 25 W maximum.	

Mechanical: Bench mounting. DIMENSIONS: (wxhxd): 375x112x343 mm (14.8x4.4x13.5 in.). WEIGHT: 5.6 kg (12.3 lb) net,10 kg (22 lb) shipping.

Description	Catalog Number
1657 RLC Digibridge®	
120-Hz and 1-kHz Test Frequencies	1657-9700
100-Hz and 1-kHz Test Frequencies	1657-9800
Accessories	
Extender Cable with banana plugs/alligator clips	1657-9600
Extender Cable with type 874 coaxial connectors	1688-9600
Remote Test Fixture (requires BNC adaptor)	1689-9600
BNC Adaptor	1689-9601
BNC Cable Assembly (for 1689-9600, 1689-9601)	1689-9602

Warranty

QuadTech warrants that Products are free from defects in material and workmanship and, when properly used, will perform in accordance with QuadTech's applicable published specifications. If within one (1) year after original shipment it is found not to meet this standard, it will be repaired, or at the option of QuadTech, replaced at no charge when returned to a QuadTech service facility.

Changes in the Product not approved by QuadTech shall void this warranty.

QuadTech shall not be liable for any indirect, special or consequential damages, even if notice has been given of the possibility of such damages.

This warranty is in lieu of all other warranties, expressed or implied, including, but not limited to any implied warranty or merchantability or fitness for a particular purpose.

SERVICE POLICY

QuadTech policy is to maintain product repair capability for a period of five (5) years after original shipment and to make this capability available at the then prevailing schedule of charges.

Table of Contents

Specifications

Warranty	
Introduction Section 1	
1.1 Purpose 1.2 General Description	1-1 1-1
1.3 Controls, Indicators, and Connectors . . . 1.4 Accessories	1-1 1-1
Installation Section 2	
2.1 Unpacking and Inspection . </td <td>2-1 2-1</td>	2-1 2-1
	2-1 2-2
2.5 Test-Fixture Connections	2-2 2-3
2.7 Environment	2-4
Operation Section 3	
3.1 Basic Procedure	3-2
3.2 Connection of the DUT	3-3 3-3
3.2.2 The Extender Cable 3.3 Function and Range Selections	3-3 3-3
3.3.1 Function Pushbuttons	3-3
3.3.2 Range Pushbuttons	3-3 3-4
3.4.1 Graphs	3-4 3-6
3.5 Parallel/Series and Frequency Selections	3-6
3.5.1 General 3.5.2 Rules	3-6 3-6
3.5.3 Series and Parallel Parameters	3-6 3-7
3.5.5 Parallel Equivalent Circuits for Inductors	3-7
3.6 Bias 3.7 Correction for Cable	3-7 3-8
Theory Section 4	
4.1 Introduction	4-1 4-1
4.1.2 Brief Description of the 1657 Digibridge	4-1
	4-1 4-2
4.2.1 Elementary Measurement Circuit	4-2
4.2.2 Frequency and Time Source 4.2.3 Sine-Wave Generation	4-3 4-3

Service and Maintenance - Section 5

Service and Maintenance — Section 5	
5.1 Customer Service	. 5-1
5.2 Instrument Return	5-1
5.2.1 Returned Material Number	. 5-1
5.2.2 Packaging	5-1
5.3 Repair and Replacement of Circuit Boards	. 5-1
5.4 Performance Verification	5-2
5.5 Minimum Performance Standards	. 5-3
5.5.1 General	5-3
5.5.2 Resistance Measurement Accuracy	. 5-5
5.5.3 Capacitance Measurement Accuracy	5-5
5.5.4 D Measurement Accuracy	. 5-5
5.5.5 Inductance Measurement Accuracy	5-6
5.6 Disassembly and Access	5-6
5.6.1 Disassembly	5-7
5.6.2 Access	5-9
5.6.3 Reference Designations	5-10
5.6.4 Removal of Multiple-Pin Packages	5-10
5.7 Periodic Maintenance	5-10
5.7.1 Care of the Test Fixture	5-10
5.7.2 Care of the Display Panel	5-10
5.8 Trouble Analysis	5-11
5.8.1 General	5-11
5.8.2 Power Supply	5-12
	5-12
5.8.3 Sinewave Generator	5-12
	5-15
5.8.5 Control Signal Checks	5-15
5.8.6 Digital Circuitry	5-10
Development Discourse Contine C	
Parts List and Diagrams Section 6	
6.1 General	6-1
6.2 Beference Designations	6-1
6.3 Diagrams	6-1
	6-2
Figure 6-1. Front view, Mechanical Parts Figure 6-2. Rear view, Mechanical Parts	6-2
Federal Manufacturers Code	6-4
Figures 6-3 6-6. Analog and Control Board,	
1657-4700, as follows:	
Figure 6-3. Front End Diagram	6-5
Figure 6-4. Layout	6-6
Figure 6-5. Signal Sources Diagram	6-7
Figure 6-6. Digital Control Diagram	6-9
Figure 6-7. Display (D) Board, 1658-4715, Layout	
Figure 6-8. Display (D) Board, 1658-4715, Diagram	6-11
Figure 6-9. Power Supply (V) Board, 1657-4720	
	6-13
Layout . Figure 6-10. Power Supply (V) Assembly, 1657-4720,	
Diagram	6-13
	5.15

Introduction - Section 1

1.1 PURPOSE	1-1
1.2 GENERAL DESCRIPTION	1-1
1.3 CONTROLS, INDICATORS, AND CONNECTORS	1-1
1.4 ACCESSORIES	1-1

1.1 PURPOSE.

The 1657 Digibridge digital impedance meter embodies use of a microprocessor and other LSI circuitry to provide excellent performance at low cost.

A few clearly labeled pushbuttons and the versatile built-in test fixture make this instrument a model for convenience. Measurement results are clearly shown with decimal points and units, which are automatically presented to assure correctness. Display resolution is 5 digits for R, C, and L (4 for D or Q) and the basic accuracy is 0.2%.

Long-term accuracy and reliability are assured by the measurement system. It makes these accurate analog measurements over many decades of impedance without a single calibration or "trimming" adjustment (not even in original manufacture).

The built-in test fixture, with a pair of plug-in adaptors, receives any common component part (axial-lead or radiallead) so easily that insertion of the DUT is a one-hand operation. True 4-terminal connections are made automat ically. Extender cables and other accessories are available

for measurements at a distance from the Digibridge.

1.2 GENERAL DESCRIPTION.

Convenience is enhanced by the arrangement of test fixture on the front ledge, with push buttons farther forward and display behind. The display panel is inclined and recessed to enhance visbility of digital readouts and mode indicators. These indicators serve to inform and guide the operator as he operates the simple controls.

The instrument stands on a table or bench top. The sturdy metal cabinet is attractively and durably finished,

in keeping with the long-life circuitry inside. Glass-epoxy circuit boards interconnect and support high-quality com ponents to assure years of dependability.

Adaptability to any common ac power line is assured by the removable power cord and the convenient line-voltage switch. Safety is enhanced by the fused, isolating power transformer and the 3-wire power connection. A compre hensive functional description is given in Theory, Section 4 Electrical and physical characteristics are listed in Specifi cations at the front of this manual, dimensions in Installa tion, Section 2. Controls are described below, and their use in Operation, Section 3.

1.3 CONTROLS, INDICATORS, AND CONNECTORS.

Figure :-1 shows the front panel conrols and indicators. Table 1-1 identifies them with descriptions and functions. Similarity Figure JCA beyweithe argument and Jiabled - Collectifies

and describes the rear panel controls and connectors.

1.4 ACCESSORIES.

Gen Rad makes several accessories that enhance the use fulness of this instrument. Two extender cables facilitate making connections to those devices and impedance stan dards that do not readily fit the built-in test fixture. A remote test fixture (used with BNC adaptor and cable assembly) provides convenience and relatively easy main tenance, and saves wear on the built-in test fixture. All of these test-fixture accessories provide for true 4-terminal connections (and guard) to the device being measured, without appreciable reduction in measurement accuracy. Other useful accessories are offered, such as standards for checking the performance of the Digibridge. Refer to Table 1 -3 and Section 5.

Figure 1-1. Front panel controls and displays.

Figure 1-1 Ref.No. Name		Description	Function				
1	RLC display	Digital display, 5 numerals with decimal points. Unit labels $M\Omega$, $\ltimes \Omega$, Ω , mH, nF, μ F, with 7 lights.	Display of principal measured value. Light spo indicates units.				
2	ADJUST RANGE lights	Arrowheads with a light behind each.	Guides operator to optimum range. Left arrow means "try next pushbutton to left." Right arrow means the converse. No light means "Cor- rect range." Also see para 3.3.				
3	DQ display	Digital display, 4 numerals with decimal points.	Display of secondary measured value, D if you select C/D, Q if you select L/Q with item 9.				
4	POWER switch	Pushbutton (push again to re- lease).	Turns instrument ON when in, OFF when out. OFF position breaks both sides of power circuit.				
5	Test fixture	Pair of special connectors; each makes dual contact with inserted wire lead of DUT.	Receives radial-lead part, making 4-terminal connection automatically. Adaptors are supplied to make similar connection with axial-lead part.				
6	PARALLEL/SERIES lights	Legend with 2 lights.	Indicates the selection of parallel or series equivalent circuit of the DUT (by item 10). Refer to para 3.5.				
7	Frequency lights	Legend with 2 lights, 120 Hz, 1 kHz, (or 100 Hz, 1 kHz).	Indicates the selection of test frequency by item 11.				
8	RANGE pushbuttons	Set of 3 interlocked, latching pushbuttons, labeled 3, 2, 1. The latched button is released by depressing another one.	Manual selection of measurement range, in conjunction with item 9.				
9	FUNCTION push- buttons	Set of 3 pushbuttons, similar to item 8, labeled R, L/Q , C/D.	Manual selection of parameter to be measured: resistance, inductance, or capacitance.				
10	PARALLEL/SERIES pushbutton	Pushbutton (push again to re- lease).	Manual selection of equivalent circuit. Item 6 indicates the one in use.*				
11	FREQUENCY push- button	Pushbutton, like item 10.	Manual selection of frequency. Item 7 indicates the frequency in use.*				

Table 1-1 FRONT PANEL CONTROLS AND INDICATORS

*When these buttons are "in", the selections are PARALLEL and 120 Hz (100 Hz).

Figure 1-2. Rear panel controls and connectors.

Table 1-2						
REAR PANEL CONNECTORS AND CONTROLS						

Figure 1-2 Ref. No. Name		Description	Function
1R	Power connector, (labeled 50-60 Hz)	Safety shrouded 3-wire plug, con- forming to International Electro- technical Commission 320.	Ac power input. Use appropriate power cord, such as GR 4200-9625, with Belden SPH-386 socket or equivalent.
2R	Fuse (labeled 0.5 A, 250 V, SLOW BLOW)	Fuse in extraction post holder.	Short circuit protection. Use Bussman type MDL or equivalent fuse, 1/2 A, 250 V rating.
3R Line-voltage switch		Slide switch. Vertical motion: upper position, 90 to 125 V; lower position, 180 to 250 V	Adapts power supply to line-voltage ranges, as indicated. To operate, use small screwdriver, not any sharp object.
		Table 1-3	
		ACCESSORIES	
	Quantity	Description	Part Number
	1 supplied	Power cord, 210 cm (7 ft) long, 3-wire, AWG molded connector bodies. One end, with Belo socket, fits instrument. Other end is stackable conforming to ANSI standard C73.11-1966 (f	den SPH-386 e (hammerhead)
	2 supplied	Test-fixture adaptors, for axial-lead parts	
		Reorder number, for a set of four:	1657-5996
	1 available Rack mount kit (slides forward for complete access). 1 available Extender Cable with banana plugs/alligator clips. Length 100 cm (40 in.)		access). 1657-9000
			ips. 1657-9600
	1 available	Extender Cable with type 874 coaxial connec Length 30 cm (12 in.)	tors. 1688-9600
	1 available	Remote Test Fixture (requires BNC adaptor)	1689-9600
	1 available	BNC Adaptor	1689-9601
	1 available	BNC Cable Assembly (for 1689-9600, 1689-9 Length 90 cm (36 in.)	601). 1689-9602

Installation - Section 2

2.1 UNPACKING AND INSPECTION								. 2-1
2.2 DIMENSIONS								. 2-1
2.3 POWER-LINE CONNECTION	-				•			. 2-1
2.4 LINE-VOLTAGE REGULATION .								. 2-2
2.5 TEST-FIXTURE CONNECTIONS								. 2-2
2.6 EXTERNAL BIAS	•	•	•			•		· 2-2
2.7 ENVIRONMENT		-						· 2-3

Figure 2-1. Overall dimensions.

2.1 UNPACKING AND INSPECTION.

If the shipping carton is damaged, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for damage (scratches, dents, broken parts, etc.). If the instrument is damaged or fails to meet specifications, notify the carrier and the nearest GenRad field

office. (See list at back of this manual). Retain the shipping carton and the padding material for the carrier's inspection.

2.2 DIMENSIONS

Figure 2-1.

The instrument is supplied in the bench configuration,

i.e., in a cabinet with resilient feet for placement on a table. The overall dimensions are given in the figure.

2.3 POWER-line CONNECTION.

The power transformer primary windings can be switched, by means of the line voltage switch on the rear panel, to ac. commodate ac line voltages in either of 2 ranges, as labeled, at a frequency of 50 or 60 Hz, nominal. Using a small screwdriver, set this switch to match the measured voltage of your power line.

I f your I ine voltage is in the lower range, connect the 3-wire power cable (P/N 4200-9625) to the power connector on the rear panel (Figure 1-2) and then to the power line.

The instrument is fitted with a power connector that is in conformance with the International Electrotechnical Commission publication 320. The 3 flat contacts are surrounded by a cylindrical plastic shroud that reduces the possibility of electrical shock whenever the power cord is being unplugged from the instrument. In addition, the center ground pin is longer, which means that it mates first and disconnects last, for user protection. This panel connector is a standard 3-pin grounding-type receptacle, the design of which has been accepted world wide for electronic instru. mentation. The connector is rated for 250 V at 6 A. The receptacle accepts power cords fitted with the Belden type SPH-386 connector.

The associated power cord for use with that receptacle, for line voltages up to 125 V, is Gen Rad part no. 4200-9625.

It is a 210-cm (7 ft), 3-wire, 18-gage cable with connector bodies molded integrally with the jacket. The connector at the power-line end is a stackable hammerhead design that conforms to the "Standard for Grounding Type Attachment Plug Caps and Receptacles," ANSI C73. 11-1966, which specifies limits of 125 V and 15 A. This power cord is listed by Underwriters Laboratories, Inc., for 125 V, 10 A.

If the fuse must be replaced, be sure to use a "slow blow" fuse of the current and voltage ratings shown on the rear panel, regardless of the line voltage.

If your line voltage is in the higher range selectable by the line voltage switch, use a power cord of the proper rating (250 V, 15 A) that mates with both instrument and

your receptacle. It is possible to replace the "hammerhead" connector on the power cord that is supplied with a suitable connector. Be sure to use one that is approved for 250 V, 15 A. A typical configuration is shown in Figure 2-2.

2.4 LINE-VOLTAGE REGULATION

The accuracy of measurements accomplished with precision electronic test equipment operated from ac line

sources can often be seriously degraded by fluctuations in primary input power. line-voltage variations of +/-15% are commonly encountered, even in laboratory environments.

Although most modern electronic instruments incorporate some degree of regulation, possible power.source problems should be considered for every instrumentation setup. The use of line-voltage regulators between power lines and the

test equipment is recommended as the only sure way to rule out the effects on measurement data of variations in line voltage.

2.5 TEST-FIXTURE CONNECTIONS.

2.5.1 Test Fixture on the Digibridge.

Because an unusually versatile test fixture is provided on the front shelf of the instrument, no test-fixture connection is generally required. Simply plug the device to be measured (DUT) into the test fixture, with or without its adaptors. For details, refer to paragraphs 3.1, 3.2. Accessories can be attached to extend and adapt the test fixture, as described below.

2.5.2 Remote Test Fixture.

Connection of the DUT at a remote test fixture requires proper adaptors and cable connections from the Digibridge. Obtain the following accessories. (See Table 1-3.)

BNC Adaptor 1689-9601

BNC Cable Assembly 1689-9602, or equivalent

Remote Test Fixture 1689-9600, or equivalent

handler or special fixture.

This remote test fixture functions like the one supplied on the Digibridge. True "Kelvin" connections are made at the points of contact with the DUT leads. Install as

follows:

a. Remove any adaptors, if present, from the test

fixture.

b. Plug the BNC adaptor into the basic test fixture with the BNC connectors facing forward. lock the connection with the 2 captive thumb screws. (The screws must be

seated to complete the ground connection.)

c. Connect the cable assembly to the adaptor on the Digibridge and to the remote test fixture as indicated in Table 2-1.

NOTE

User provided cables and/or remote test fixtures can be used, particularly if the DUT is to be handled automatically. See paragraph 3.7 for comments on cable and fixture capacitance.

2.5.3 The 1657-9600 Extender Cable (Banana Plugs).

The accessory extender cable 1657-9600 is available *to* connect to DUTs that are multiterminal, physically large, or otherwise unsuited for the built-in test fixture. This cable is particularly convenient for connecting multiterminal components with binding posts that accommodate banana plugs. Use the following procedure to install the extender cable on the instrument.

a. Remove the adaptors, if present, from the test

fix tu re.

b. Plug the single-connector end of the extender cable into the Digibridge test fixture so that its blades enter both slots and the cable lies away from the display panel. lock the connector with the *two* captive thumb screws.

c. Note the color coding of the five banana plugs. Be sure that the "low" terminals (both potential and current) *connect* to one end of the DUT and the "high" terminals to the other end. Connect guard to a shield if any, but not to either end of the DUT.

Figure 2-2. Configuration of 250-V, 15-A plug. Dimensions in mm. This is listed as NEMA 6-15P. Use for example Hubbell plug number 5666.

Table 2-1 TEST FIXTURE CONNECTIONS VIA BNC ADAPTOR 1689-9601

Test-Circuit Function	BNC Connector on 1689-9601 (at Digibridge)	Color Code in 1689-9602 Cable	Connection* at 1689-9600 Test Fixture (Remote) I, Right P, Right-center				
I— (current, low) P— (potential, low)	I_, Left P_, Left-center	Black Black/white					
P+ (potential, high) I+ (current, high)	P _H , Right-center I _H , Right	Red/white Red	P+, Left-center I+, Left				

*Left and right are defined with the fixture oriented for right reading of legend.

P-(potential, low) = Black/white I-(current, low) = Black P+(potential, high) = Red/white I+(current, high) = Red Guard = Black/green

2.5.4 The 1688-9600 Extender Cable

("Type 874" Connectors).

The accessory extender cable 1688-9600 can be used to connect a DUT that is multiterminai, physically large, or otherwise unsuited for the built-in test fixture. This low-capacitance cable is used, for example, to connect type-874

connected impedance standards or a special test fixture. Make connections as follows:

a. Remove the adaptors, if present, from the test fixture.

b. Plug the single-connector end of the extender cable into the Digibridge test fixture so that its blades enter both slots and the cable lies away from the display panel. Lock the connector with the two captive thumb screws.

c. Using the branched end of the cable, connect to the DUT with careful attention to the following color code.

The cable tips are type 874 coaxial connectors, which

mate with a broad line of components and adaptors.

CAPACITOR TO BE MEASURED

Figure 2-3. Connection of a bias voltage source to enable measurement of capacitors with bias applied. Because the measurement current (up to 30 mA rms) must pass through the bias source, it must be capable of being both source and sink for peaks of about 45 mA. Observe the voltage limits and procedural warnings in the text. Refer to the text also for discharge circuitry. Notice that the 2 wires with red must connect to the same end of the DUT, through a coaxial tee if the DUT is a 2-terminal device; the 2 wires labeled with black, connect to the other end, similarly. Connect the outer (shield) contacts to the shield or case of the DUT only if it is isolated from both ends of the DUT.

EXTENDER CABLE COLOR CODE

RED AND RED: 1+, current drive to "high" end of DUT.
RED AND WHITE: P+, potential connection to same.
BLACK AND BLACK' I-, current return at DUT "low".

BLACK AND WHITE: P-, potential

connection to same.

OUTER CONTACTS: G, guard connection to shield or case.

2.6 EXTERNAL BIAS.

Figure 2-3.

WARNING

To minimize electrical shock hazard, limit bias to 30V. Bias voltage is present at connectors, test

fixtures and on capacitors under test.

Capacitors remain charged after measurement.

Do NOT leave instrument unattended with bias

applied.

Full bias voltage appears on test leads, bias-voltagesource terminals, and on the leads of the component being measured. Capacitors that have been charged are dangerous until properly discharged; the user must follow safe procedures to assure discharge. For safety, all personnel operating the instrument with bias must be aware of the hazards, follow safe procedures, and never leave the equipment unattended with bias voltage applied.

2.6.1 Basic Bias Connections.

In order to measure a capacitor with dc bias voltage applied, connect an external voltage source, as follows:

a. Attach the remote test fixture or an extender cable as described in paragraph 2.5. Observe the color coding explained there.

INSTALLATION 2-3

b. Connect a suitable bias voltage source (see below) in series with the 1+ connection, basically as shown in the diagram, with the following details.

With the Remote Test Fixture. Disconnect the red coded BNC cable end from the remote test fixture and connect one end of plain BNC cable there instead.

Connect the red coded BNC cable end to the negative terminal of the bias voltage source. Connect the remaining free end of the plain BNC cable to the positive terminal of the bias voltage source. Connect the DUT to the test fixture in the usual way.

With 1657-9600 Extender Cable (Banana Plugs). Connect the red banana plug to the negative terminal of the bias voltage source. Connect a suitable banana plug patch cord to the positive terminal. We designate

the free end of this patch cord as I++, as shown in the diagram.

With 1688-9600 Extender Cable

("Type 874 Connectors").

Connect the "red and red" cable to the negative terminal of the bias voltage source. Connect a suitable type-874 patch cable to the positive terminal. We designate the

free end of this patch cable as I++, as shown in the diagram.

c. If either of the extender cables (not the remote test fixture) is used, connect the DUT as follows. If capacitance is large (range 1), make 2 connections to each capacitor terminal (Kelvin connections). That is, I- and P- to capacitor negative terminal; P+ and I++ to capacitor positive terminal.

If the capacitance is smaller (range 2 or 3) the banana plugs can be stacked or a tee used with type-874 connectors

and a single connection made to each capacitor terminal: I- /P- to the negative terminal, P+/I++ to the positive.

To make 3-terminal (or 5-terminal) measurements, also connect guard (see paragraph 2.5) to the guard terminal, shield, case, or ground of the capacitor, provided that this is insulated from the 2 main terminals of the capacitor. Do not connect guard to the case of a capacitor if the case is one of its 2 main terminals.

2.6.2 Bias Voltage Source Description

The bias voltage source must satisfy several criteria:

1. Supply the desired terminal voltage (dc)

2. Serve as source for charging current.

3. Serve as source and sink for the measuring currents

(ac), which are 45, 0.45, and .0045 mA, peak, for measurements on ranges 1, 2, and 3, respectively.

4. Present a low, linear terminal impedance (<< 10 ohms) at measuring frequency.

If the bias voltage source is a regulated power supply

with the usual characteristic that it functions properly only as a source, not a sink, then the following test setup is recommended. Connect across the power supply a bleeder resistor that draws dc current at least as great as the peak measuring current (item 3 above). In parallel with the bleeder, connect a 100-pF capacitor. (If the power supply has exceptionally good transient response, the capacitor is not necessary.)

No single bleeder resistor will suffice for all bias conditions, so it may be necessary to switch among several. Each resistance must be small enough to keep the power supply regulator current unidirectional (as mentioned above) for the smallest bias voltage in its range of usefulness. Also the resistance and dissipation capacity must be large enough so that neither the power supply is overloaded nor the resistor itself damaged for the highest bias voltage in its range of application.

NOTE

For convenience, a suitable active current sink can be used in lieu of bleeder resistors.

A discharge circuit is also required. (Do not depend on the abovementioned bleeder resistor.) A dual discharge circuit is recommended. Connect a clip lead with a *10-Q* resistor in series and another plain clip lead to the I-/Pjunction. Provide the loose ends of these with insulated alligator clips for use when completing the discharge path across the DUT. For a recommended procedure, refer to para 3.6.

I f the measurement program warrants the expense of a test fixture for biased-capacitor measurements, its function should be equivalent to that of the circuit described above. It should be equipped with convenient switching to remove the bias source, discharge through 10 Q, and finally to short out the capacitor after measurement. For automated test setups, it is also feasible to precharge the capacitors before they are attached to the test fixture and to discharge them after they have been removed.

CAUTION

To avoid damage to the instrument, limit the bias voltage to 30 V, maximum, in any precharging bias supply, used as mentioned above.

2.7 ENVIRONMENT.

The Digibridge can be operated in nearly any environment that is comfortable for the operator. Keep the instrument and all connections to the parts under test away from

electromagnetic fields that may interfere with measurements.

Refer to the Specifications at the front of this manual for temperature and humidity tolerances. To safeguard the instrument during storage or shipment, use protective packaging. Refer to Section 5.

Operation – Section 3

	BASIC PROCEDURE				
3.2	CONNECTION OF DUT		-		. 3-3
3.3	FUNCTION AND RANGE SELECTIONS				. 3-3
3.4	ACCURACY				. 3-4
3.5	PARALLEL/SERIES AND FREQUENCY SELECTION	IS			. 3-6
3.6	BIAS		•		. 3-7
3.7	CORRECTION FOR CABLE				. 3-8

Figure 3-1. Use of the test fixture adaptors.

3.1 BASIC PROCEDURE.

Figure 3-1.

For initial familiarization, follow this procedure care fully. For details, refer to later paragraphs in Operation.

a. Before connecting the power cord, slide the linevoltage switch (rear panel) to the position that corresponds to your power-line voltage. Power must be nominally either 50 or 60 Hz ac, either 120 or 220 V. (Refer to specifications at front of this manual.) The 1657-9700 can be run on 50 Hz but with some loss of accuracy for 120-Hz measurements in high range extensions. Similarly, the 1657-9800, if run on 60-Hz power, experiences some extraneous noise in 100Hz measurements in high range extensions.

If the fuse must be replaced, be sure to use a "slow blow" fuse of the rating shown on the rear panel.

b. Connect a typical device, whose impedance is to be measured, as follows. (This device under test is denoted DUT.)

NOTE

Clean the leads of the DUT if they are notice ably dirty, even though the test-fixture contacts will usually bite through a film of wax to pro vide adequate connections.

Radial-lead DUT: I nsert the leads into the test.fixture slots as shown in the photograph, Figure 1-1. For details of wire size and spacing limits, refer to para 3.2.

Axial-lead DUT: Install the test-fixture adaptors, supplied, one in each slot of the test fixture, as shown in the accompanying figure. Slide the adaptors together or apart

so the body of the DUT will fit easily between them. Press the DUT down so that the leads enter the slots in the adaptors as far as they go easily. For details of wire size and DUT size limits, refer to para 3.2.

NOTE

To remove each adaptor, lift with a gentle tilt left or right. For a DUT with very short leads it is important to orient each adaptor so its internal contacts (which are off center) are close to the DUT.

Other DUTs, Remote Connections, and Bias.

For connections via extender cables and remote

test fixtures, refer to the installation instructions of paragraph 2.5. For connection of bias voltage and operating procedures with bias, refer to paragraphs 2.6 and 3.6. For convenience, the typical color coding used in extender cables is repeated below.

Red: I+, current connection to "high" end of DUT.,

Red & white: P+potential connection to same.

Black: I-, current connection to low endof DUT. .

Black & white: P-, potential connection to same

Black & Green: G, guard connection to shield or case (if isolated from the preceding terminals). Do not-connect G to the case of a capacitor if the case serves as (or is connected to) one of its 2 main terminals.

3-2 OPERATION

Notice that the 2 red tips must connect to the same end of the DUT. The terminals with white bands are potential connections; with no bands, current terminals.

c. Set.the pushbuttons according to the desired measure ment, as follows:

Power. Depress the POWER button so that it stays in the depressed position. (To turn the instrument off, push and release this button so that it remains in the released position.)

Function. For resistance, depress R. For inductance, depress L/Q. For capacitance, depress C/D. Be sure that one of these buttons is in the depressed position.

Frequency. For measurement at 1 kHz, push and release the FREQUENCY button until the 1-kHz light comes on. For 120 (100) Hz, push the same button so that the 120-Hz (100.Hz) light comes on.

Parallel or Series. For series equivalent circuit, push and release the PARALLEL/SERIES button until the SERIES light comes on. For parallel equivalent circuit, push this button so that the PARALLEL light comes on. (The choice is significant for lossy capacitors or inductors, not for lowloss reactive components or non-reactive resistors.) For further explanation, refer to para 3.5.

Range. Depress the middle (RANGE-2) button first and watch the ADJUST RANGE lights. If the right-pointing arrow is lighted, depress RANGE button at the right. If the left-pointing arrow is lighted, depress RANGE button at the left. When neither arrow is lighted, the range you have selected is correct. (Be sure that one of the RANGE buttons is in the depressed position.) Additional comments on range choices are below.

d. Read the measurement on the main displays. The R LC display is the principal measurement, complete with decimal point and units, which are indicated by the light spot behind M , k, , H, mH, nF, or uF.* The DQ display is D if the C/D FUNCTION button is in, Q if the L/Q button is in.

e. After any change in DUT or measurement conditions, before looking at the displays, notice the ,ADJUST RANGE

lights. Interpret them as follows:

Neither light. Correct range. (There are minor exceptions.)

Left Light. Wrong range; try next RANGE button to left.

Right Light. Wrong range; try next RANGE button to

right.

Both Lights. Overrange or invalid display. If FUNCTION is correct and RANGE is highest, the measurement is valid but because of an overrange condition, the basic 0.2% accuracy cannot be guaranteed. (If you switch to RANGE 2, one

of the lights will go out.) If both lights are lit on RANGE 2, either the FUNCTION is inappropriate for the DUT or it is not properly connected. For more details, refer to para 3.3.

*If the extender cable is used, it may be necessary to correct for its capacitance.

3.2 CONNECTION OF THE DUT. 3.2.1 The Integral Test Fixture.

The test fixture provided on the front ledge of the Digi

bridge provides convenient, reliable, guarded 4-terminal connection to any common radial-lead or axial-lead component.

If the slots of your test fixture have rounded ends, the slots accommodate wires of any diameter from 0.25 mm (.01 in., AWG 30) to 1 mm (.04 in., AWG 18), spaced from 6 to 98 mm apart (0.23 to 3.9 in.) or equivalent strip conductors. Each "radial" wire must be at least 1 cm long

(0.4 in.). However, if the slots of your test fixture have square ends, they will accommodate wires spaced as close as 4 mm (0.16 in.) and each "radial" wire must be at least

4 mm (0.16 in.) long. The divider between the test slots contains a shield, at guard potential, with its edges exposed. The adaptors accomm odate wi res of any diameter up to 1.5 mm (.06 in., AWG 15). The body of the DUT that will fit between these adaptors can be 80 mm long and 44 mm diameter (3.1x1.7 in.) maximum. Each "axial" wire must be at least 3 mm long (0.12 in.).

For radial-lead parts, remove each adaptor from the test fixture by a gentle pull upward, made easier by bending the adaptor left or right (never forward or back). For axial-lead parts, insert the adaptors, one in the left slot and the other

in the right slot of the test fixture, by pushing vertically downward. They can be slid left and right to match the length of DUT to be measured. Notice that the contacts inside the adaptor are off center; be sure to orient the adaptors so the contacts are close to the body of the DUT, especially if it has short or fragile leads.

Insert the DUT so one lead makes connection on the left side of the test fixture, the other lead on the right side. Insertion and removal are smooth, easy operations and connections are reliable if leads are clean and straight.

Be sure to remove any obvious dirt from leads before inserting them. Be sure the contact pair inside each half of the test fixture is held open by a single item ONLY, whether that is one lead of an axial-lead DUT or one adaptor, to obtain true "Kelvin" connections.

3.2.2 Test Fixture Accessories.

An accessory extender cable or adaptor, cable, and remote test fixture, as described in Table 1-3, is needed

to connect any DUT that is multiterminal, physically

large, or otherwise unsuited for the built-in test fixture.

A cable is needed, for example, to connect impedance standards, a remote test fixture, capacitors to be measured with bias, etc. For connection to the instrument, refer to paragraph 2.5. For measurements with bias,

refer to paragraphs 2.6 and 3.6. The color code for the branched end of each cable is given in paragraph 3.1. To correct for cable capacitance, refer to paragraph 3.7.

3.3 FUNCTION AND RANGE SELECTIONS.

3.3.1 Function Pushbuttons.

The selection of the principal parameter to be measured is almost selfexplanatory. Depress the appropriate FU NCTION button: R, L/Q or C/D to measure resistance, inductance, or capacitance. The instrument will tolerate, to some degree, a poor choice of function, but accuracy is thereby reduced. The readout will indicate a completely wrong choice of function, as explained below. Notice that the appearance of a device can be misleading. (For example, a faulty inductor can be essentially capacitive or resistive; a component part can be mislabeled or unlabeled.)

If both ADJUST RANGE lights are on, the RANGE 2 button is in, the RLC display is blank, and the DUT is properly connected, then the choice of function is probably wrong. Most likely, if the L/Q button is in, the DUT is capacitive; or if the C/D button is in, the DUT is inductive.

Observe the DQ display for an indication of poor choice of function (though tolerable). Large D or small 0 may indicate that the "reactor" being measured is practically a

resistor at the measuring frequency. If the C/D button is in and the D reading is between 1 and 10 (or blank, as it will be for D> 10) it is possible that the DUT is eno,ugh like a resistor to be measured best with the R button in. Similarly, if the L/Q button is in and the Q reading is

between zero and 1, it is possible that the DUT is enough like a resistor to be measured best with the R button in. Notice that when the R button is in, the DO display is always blank. On the other hand, any D or Q display is valid, even if the "wrong" function has been selected. (The C or L display can be blank.)

If the R button is in (a resistor is being measured) the easy way to determine whether the DUT is reactive is to try making C/D and L/Q measurements. If you obtain a valid C measurement with D < 1, the DUT is capacitive. The smaller this D value, the less accurate the R measurement. Similarly, if you obtain a valid L measurement with Q > 1, the DUT is inductive. The larger this Q value the less accurate the R measurement. (See para 3.4.)

3.3.2 Range Pushbuttons.

Range selection is also nearly self-explanatory. Follow the ADJUST RANGE lights. The left light means: "Push the next range button to the left." The right-hand light

means: "Push the next range button to the right." Continue until both lights go out. The instrument will usually display a measurement (at reduced accuracy) even though the range is not optimum. The following details about range are best

understood with reference to para 3.4 (particu1arly the RLC basic accuracy graph).

The RANGE buttons are placed in order of decreasing impedance, 3-2-1. The "highest" range is therefore Range 1

for C/D; but it is Range 3 for Rand L/Q.

OPERATION 3-3

Manual range	Automatic subrange	R 1 kHz	R 120 (100) Hz	L 1 kHz	L 120 (100) Hz	C 1 kHz	C 120 (100) Hz
	(1A	19. 99 9 Ω	19.999 Ω	1.9999 mH	19.999 mH	19.999 μF	199.99 μF
1	{ 1B*	999.99	999. 99 Ω	99.999 mH	999.99 mH	999.99 μF	9999.9 µF
$(Z_0 = 10 \ \Omega)$	(1C**	·					99999.μF
2	€2A	1.9999 kΩ	1.9999 kΩ	.19999 H	1.9999 H	.19999 μF	1.9999 μF
2 (Z _o = 1 kΩ)	2 8*	99.999 kΩ	99.999 kΩ	9.9999 H	99.999 H	9.9999 μF	99.999 μF
	(3A	.19999 MΩ	.19999 MΩ	19.999 H	199.99 H	1.9999 nF	19.999 nF
3	₹ 38*	9.9999 MΩ	9.9999 MΩ	999.99 H	9999.9 H	99.999 nF	999.99 nF
(Z _o = 100 ks	ת) (3C**		99.999 MΩ				

Table 3-1 FULL SCALE READOUTS ON EACH SUBRANGE

*Each "B" subrange covers a full decade (example, 20 to $200^{\circ}\Omega$) in the basic range and an upper range extension (example 200 to $999^{\circ}\Omega$), in which accuracy is reduced and the ADJUST RANGE light(s) is on.

**Each "C" subrange is a further extension of the highest range (example, 10 to 99.9⁺ $M\Omega$).

Each basic range is slightly more than 2 decades wide, from an R LC display of 01900, with an automatic decimal point change between the decades, to 19999. (The symbol 0 represents

a blanked zero. Initial zeroes to left of the decimal point are always blanked out of the RLC display.) Each of the 3 ranges goes beyond its basic range, with both upper and lower range extensions (shown by lighter lines in the RLC basic accuracy graph). Several of these extensions are seldom used because they overlap "basic" portions of other ranges and because the operator is alerted to this fact by an ADJUST RANGE light.

Each range includes 2 or 3 subranges, distinguished by the automatic decimal-point shift. The operator does NOT control them. Subranges are detailed in Table 3-1. Notice, for example, if you select RANGE 1, C/D, 1 kHz, then there are 2 subranges: 19uF and 999uF. If a series of measurements is made with C increasing slowly above 19uF, the automatic subrange change takes place at 21. But with C decreasing, the change takes place at 20. This hysteresis eliminates a possible cause of flickering of the display.

The "low" extension of each range goes from 01900 down to 00000, without any change in decimal point, but with reduced accuracy. The number of digits in this display is always adequate for the specified accuracy. Any measurement in the low extension of either Range 2 or the highest range causes the appropriate ADJUST RANGE arrow to be lighted. But there is no such light in the low extension of the lowest range (because there is no lower range to select).

The "high" extension of each range is a factor of 5 (with 2 exceptions), going from 19999 up to 99999, and finally to blank, without any change in decimal point, but with reduced accuracy. Any measurement in the high extension of either the lowest range or Range 2 causes the appropriate ADJUST RANGE arrow to be lighted. However in

3-4 OPERATION

the high extension of the highest range, both ADJUST RANGE arrows are lighted (to indicate a useful "overrange" condition).

The high extension of the top range for Rand C only, at 120 Hz (100 Hz) only, is a factor of 50, going from 19999, with an automatic decimalpoint change, up to 99999, and finally to blank, with reduced accuracy. (Both ADJUST RANGE arrows are lighted as described above.)

A special case warrants explanation. (This is a minor exception to the basic procedure of para 3.1.) It is possible

for both ADJUST RANGE lights to be out and yet the RANGE and FUNCTION buttons to be incorrectly set.

This condition result's from either faulty connection to the DUT or a numerically small negative Lor C measurement. Sometimes a loose or dirty connection to the DUT causes

an erratic RLC display. A small negative L or C (wrong function selected) causes a zero display. In either case, check connections at the test fixture and try all 3 FUNCTIONS to see which is appropriate, R, L/Q, or C/D.

3.4 ACCURACY.

3.4.1 Graphs.

Figures 3-2, 3-3, and 3.4

The following accuracy graphs supplement the statement of accuracy in the specifications, at the front of this manual.

Figure 3.2 shows that the R LC basic accuracy of 0.2% is realized over 6 decades of impedance if the correct range

is selected (as indicated by the ADJUST RANG E lights being out). The reduction of accuracy is shown for all of the "low" and "high" range extensions. This basic RLC accuracy is valid only for "pure" R. L, or C. For the effect

RLC Values at Indicated Frequencies

Figure 3-2. R L C basic accuracy as a percent of reading. Heavy lines (solid and dotted) represent best choice of range. Range 2 is dotted. Notice that Land C scales above graph are for 120 Hz (*equally valid for 100 Hz) and the 2 below graph are for 1 kHz. The DQ accuracy factor (right-hand scale) is the multiplier that, applied to the DQ Basic Accuracy, yields complete DQ accuracy, for range extensions as well as the basic ranges (where RLC accuracy is 0.2%).

of quadrature impedance, multiply each basic accuracy value by the RLC accuracy factor; *see* below.

Figure 3-3 shows the RLC accuracy factor, which depends on D or Q. For example, suppose a capacitor measured at

1 kHz has C = 400 uF and D = 0.5. The R LC basic accuracy is 0.4% and the R LC accuracy factor is 1.5. Therefore, the accuracy of the C measurement is :+/-0.6%. Notice that the

D or Q of a resistor (if significant) can be measured by selecting the C/D or L/Q FUNCTION.

← Q (or D of Resistor)

Figure 3-3. R L C accuracy factor as a function of D and Q. Multiply the RLC Basic Accuracy by this factor to obtain complete RLC accuracy for impedances that are not "pure" resistance or reactance. For capacitors and inductors, use the D and Q scales, respectively. For resistors, use the "D of Resistor" scale if capacitive, the "Q of Resistor" scale if inductive.

Figure 3-4 shows the basic DQ accuracy, which is simple function of D or Q. For D read the lower scale and lower curve. For Q read the upper scale and upper curve. The basic DQ accuracy is valid only if measurements are made on one of the 3 basic ranges (where RLC accuracy

is best). Otherwise, multiply basic DQ accuracy by the DQ accuracy factor, shown on the right of the "RLC basic accuracy" graph. In the example of C = 400 uF, D = 0.5, the basic D accuracy is 0.5% and the D accuracy factor is 2. Therefore, the accuracy of the D measurement is :+/-1%

Figure 3-4. DQ basic accuracy as a percent of reading. These curves are directly applicable for measurements in the basic ranges. For measurements on any of the range extensions, refer also to Figure 3-2 for the DQ accuracy factor.

The logarithmic scales on these figures make it very easy to apply the accuracy factors *visually*. For example, suppose a capacitor is being measured on range 2, both ADJUST RANGE lights are out, and the D display' is about 1. Figure 3-3 shows that the C accuracy factor is about 1/3 of a decade on the logarithmic scale. On Figure 3-2, find the heavy dotted line (the basic portion of range 2) and point to the basic C accuracy (0.2%) at the left. Now apply the C accuracy factor by moving the pointer up about 1/3 of a decade. The pointer now shows the corrected C accuracy, 0.4%.

3.4.2 Insignificant Digits.

One or more of the digits at the right end of the R LC and/or DQ displays may be insignificant. This is particularly true at the upper extension of a range. If there are more than one insignificant digits in a display, the least significant is typically noisy. That is, it will appear to flicker at random over a range of values and should be ignored.

For example, if you measure a 4-M resistor, the display might ideally be 4.1234 M ; but the one or two final digits might be changing at random. This flickering is entirely normal. The specified accuracy (+/-0.4%) is the key to expected performance; in this example, the last 2 digits are insignificant and the last digit is quite unnecessary. Typically, one would record this measurement as 4.12 +/-.02 M .

3.5 PARALLEL/SERIES AND FREQUENCY SELECTIONS.

3.5.1 General.

The value of the principal measurement (R, L, or C) of a certain DUT depends on which of 2 equivalent circuits is chosen to represent it. (Many impedance measuring instruments provide no choice in the matter, but this one allows selection.) The more nearly "pure" the resistance or reactance, the more nearly identical are the "series" and "parallel" values. However, for D or 0 near unity, the difference is substantial. Also, the principal measurement often depends on measurement frequency. The more nearly "pure" the resistance or reactance, the less is this dependence. However, for D or Q near unity and/or for measuring frequency near the self-resonant frequency of the DUT, this dependence

is quite substantial. We first give general rules for selection of measurement parameters, then some of the theory.

3.5.2 Rules.

Specifications. The manufacturer or principal user of the DUT probably specifies how to measure it. (Usually "series" is specified for C, L, and low values of R.) Select "parallel" *or:* "series" and 1 kHz or 120 Hz (100 Hz) according to the applicable specifications. If there are none known, be sure to

3-6 OPERATION

specify with your results whether they are "parallel" or "series" and what the measurement frequency was.

Resistors, below about 1 k: Series, 120 Hz (100 Hz). Usually the specifications call for dc resistance, so select a low test frequency to minimize ac losses. Select "series" because the reactive component most likely to be present in a low-resistance resistor is series inductance, which has no effect on the measurement of series R. As a quick check on whether the DUT is nearly pure resistance, make a separate "parallel" measurement. Rp will be larger then Rs. If the difference is less then 1 %, then 0 is less than 0.1, and the measured Rs is probably very close to the dc resistance.

Resistors, above about 1 k: Parallel, 120 Hz (100 Hz). As explained above, select a low test frequency. Select "parallel" because the reactive component most likely to be present in a high-resistance resistor is shunt capacitance, which has no effect on the measurement of parallel R. As a quick check on whether the DUT is nearly pure resistance, make a separate "series" measurement. If the difference between Rp and Rs is less than 1%, then D is greater than 10, and the measured Rp is probably very close to the dc resistance.

Capacitors below 2 nF: Series, 1 kHz. Unless otherwise specified or for special reasons, always select "series" for capacitors and inductors. This has traditionally been standard practice. Select a high measurement frequency for best accuracy.

Capacitors above 200 uF: Series, 120 Hz (100 Hz). Select "series" for the reasons given above. Select a low measurement frequency for best accuracy and to enable measurement of capacitors larger than 1000uF.

Inductors below 2 mH: Series, 1 kHz. Select "series" as explained above. Select a high measurement frequency for best accuracy.

Inductors above 200 H: Series, 120 Hz (100 Hz). Select "series" as explained before. Select a low measurement frequency for best accuracy and to enable measurement of inductors larger than 1000 H.

3.5.3 Series and Parallel Parameters.

An impedance that is neither a pure reactance nor a pure resistance can be represented at any specific frequency by either a series or a parallel combination of resistance and reactance. Keeping this concept in mind will be valuable

Figure 3-5.

in operation of the instrument and interpreting its measurements. The values of resistance and reactance used in the equivalent circuit depend on whether a series or parallel combination is used. The equivalent circuits are shown in Figure 3-5. The relationships between the various circuit elements are as follows.

Resistance and Inductanc

Resistance and Capacitance

Figure 3-5. Equivalent circuits for a lossy inductor and a lossy capacitor.

3.5.4 Equivalent Series R for Capacitors.

The total loss of a capacitor can be expressed in several ways, including D and "ESR." To obtain equivalent series resistance, one can measure directly (if D is high enough to permit the desired accuracy) or calculate.

Direct Measurement. If, while measuring C, you observe that D is above 0.1 (or some other limit of your choice, see Figure 3-3), push FUNCTION button R and select SERIES.

Both C and ESR should be measured on the same range. If D is below 1, the range should be correct for C, even though the ADJUST RANGE light comes on while you measure ES R. However, if D is above 1, choose the correct "R" range to obtain ESR; and then remeasure C on this range.

Calculation. If D is small, it is better to calculate "ESR" as follows: Rs = D/2 fCs where = 3.1416. D and Cs are displayed on the front panel. Frequency f depends on the model of the instrument and the selected frequency as follows (+/- .01%):

1657-9700: "1 kHz" is 1020.0 Hz; "120 Hz" is 120.0 Hz. 1657-9800: "1 kHz" is 1000.0 Hz; "100 Hz" is 100.0 Hz.

"Equivalent series resistance" is typically much larger than the "ohmic" resistance of the wire leads and foils that are physically in series with the heart of a capacitor. ESR includes also the effect of dielectric loss and is therefore dependent on frequency.

3.5.5 Parallel Equivalent Circuits for Inductors.

Even though it is customary to measure series inductance of inductors, there are situations in which the parallel equivalent circuit better represents the physical device. At low frequencies, the significant loss mechanism is usually "ohmic" or "copper loss" in the wire and the series circuit is appropriate. If there is an iron core, at higher frequencies the significant loss mechanism may be "core loss" (related to eddy currents and hysteresis) and the parallel equivalent circuit is appropriate. Whether this is true at 1 kHz should be determined by an understanding of the DUT, but probably it is so if the following is true: that measurements

of Lp at 1 kHz and at 120 Hz (100 Hz) are more nearly in agreement than measurements of Ls at the same 2 frequencies.

3.6 BIAS.

To measure a capacitor with bias applied, it is necessary to insert a bias voltage source in series with the I+ lead to the DUT and to provide a means of discharging it. Refer to para 2.6 for installation of the recommended circuit.

WARNING

To minimize shock hazard, limit bias to 30 V. Bias voltage is present at connectors, test fixtures and on capacitors under test. Capacitors remain charged after measurement. Do not leave instrument unattended with bias applied.

Although special precautions are not required, we recommend the following procedure, to assure controlled

conditions for both charging and discharging. capacitors.

a. Set the bias voltage to zero.

b. Attach the DUT, with correct polarity.

c. Raise the bias voltage to the specified value.

- d. Allowa specified charging and soaking time.
- e. Observe and record the specified measurements (usually Cs and D).
- f. Set the bias voltage source to zero.
- g. Connect the 10-n discharging circuit.
- h. After about 2 s, connect the safety short circuit.

i. Remove the DUT and the discharging circuits.

3.7 CORRECTION FOR TEST FIXTURE ACCESSORIES.

3.7.1 With the Remote Test Fixture.

The remote test fixture, cable assembly, and adaptor (1689-9600, -9602, -9601) introduce about .001 nF of capacitance in parallel with the DUT, a generally negligible error. For the best accuracy, select PARALLEL, C/D, and range 3; measure the capacitance "Cc" with the remote test fixture open (no DUT). Then measure a DUT, PARALLEL, C/D; the RLC display is now

Cc + Cx, where Cx is the capacitance of the DUT. Therefore, subtract the measured Cc from the R LC display to obtain Cx.

3.7.2 With the 1657-9600 Extender Cable (Banana Plugs).

The 1657-9600 extender cable introduces about .0002 nF of capacitance in parallel with the DUT, a negligible error. For very high precision, the following procedure can be used,

determining a correction for measurements of parallel capacitance.

Because the physical arrangement and spacing of the cable branches and connectors is significant, a correction should be determined for each measurement setup. The following procedure applies to connection with a precision 3-terminal capacitor, GR 1404 or 1413, for example:

a. Install an adaptor, GR 874-Q2, on each of the two coaxial connectors, Land H, of the capacitor.

b. Connect cable branch G to the ground post of the "low" terminal adaptor. With a clip lead or plain wire, connect this point to the ground post of the "high" adaptor.

c. Connect cable branch P- to the main post of the

"low" adaptor and stack I- on top of P-.

d. Similarly, connect P+, with I+ stacked on top of it, to the main post. of the "high" adaptor.

e. Measure this total capacitance, the sum of the desired

measurement and the cable capacitance, Cx + Cc.

f. Carefully lift the stacked pair of cable tips, I+/P+, from the "high" adaptor and hold them about 0.5 cm (1/4 in.) above the binding post where they were connected.

Do NOT rearrange the cable branches or change their spacing more than is absolutely necessary to follow these directions. Hold the plastic tips (not the wires) and touch the guard (G) circuit firmly with a couple of fingers, to minimize the

effect of capacitance in your body.

g. Measure the cable capacitance, Cc.

h. Subtract the result of step g from that of step e, to obtain the desired measurement, Cx.

3.7.3. With the 1688-9600 Extender Cable

("Type 874" Connectors).

The 1688-9600 extender cable introduces no parallel capacitance that can be resolved on the 1657 Digibridge, if the shielding between "high" and "low" is maintained consistently. For example, to connect a 3-terminal DUT having two type 874 connectors, use a type 874 tee for the red and red/white cables, and another type 874 tee for the black and black/white cables.

3.8 CARE OF DISPLAY PANEL.

Use caution when cleaning the display window, not to scratch it nor to get clean ing substances into the instrument. Use soft cloth or a ball of absorbent cotton, moistened with a mild glass cleaner, such as "Windex" (Drackett Products Co., Cincinnati, Ohio). Do NOT use a paper towel; do NOT use enough liquid to drip or run.

If it should be necessary to place marks on the window, use paper-based masking tape (NOT any kind of marking pen, which could be abrasive or react chemically with the plastic). To minimize retention of any gummy residue, remove the tape within a few weeks.

Theory – Section 4

4.1 INTRODUCTION.4.2 PRINCIPAL FUNCTIONS.

4-1 4-2

4.1 INTRODUCTION.

4.1.1 General.

This instrument uses an unusual method of measurement, which is quite different from those used in previous impedance meters or bridges. A thorough understanding of this method will be helpful in unusual applications of the instrument. The following paragraph gives a brief overall descrip. tion outlining the measurement technique to one familiar with impedance measurement methods. A more detailed description of operation, specific circuitry, and control signals is given later.

4.1.2 Brief Description of the 1657 Digibridge.

This Digibridge TM uses a new measurement technique, in which a microprocessor calculates the desired impedance parameters from a series of 8 voltage measurements.* These

measurements include quadrature (90°) and inverse (180°) vector components of the voltage across the "unknown" impedance Zx and the voltage across a standard resistor Rs

carrying the same current as Zx .Each of these measure

ments is meaningless by itself, because the current through

Zx is not controlled. But the 8 measurements are all made in rapid sequence with the same phase-sensitive detector

and analog-to-digital converter. Therefore properly chosen differences between these measurements subtract out fixed offset errors, and ratios between the differences cancel out the value of the common current and the scale factor of the detector-converter.

The phase-sensitive detector uses 4 reference signals, precisely 90° apart, that have exactly the same frequency as the test signal, but whose phase relationship to any of the analog voltages (such as the 8 mentioned above) or currents (such as the current through Zx and Rs) is incidental. Therefore, no precise analog phase shifter or waveform squaring circuit is required. Correct phase relationships are maintained by generating test signal and reference signals from the same high-frequency source.

There are no calibration adjustments in the Digibridge, thanks to the measurement technique. The only precision

Patent applied for.

components in this instrument are three standard resistors and a quartz-crystal stabilized oscillator. There is no reactance standard. For example, C and D are calculated by the microprocessor from the set of 8 voltage measurements and predetermined values of frequency and the

applicable standard resistance.

The microprocessor also controls the measurement sequence, using programs in the ROM memory and a few manual selections. The desired parameters, C and D, Land Q, or R; equivalent circ,.uit, series or parallel; and frequency, either 120 Hz (100 Hz) or 1 kHz, are selected by front panel controls. There are also three manually selected ranges, which have wide overlap. The optimum range for any measurement is indicated by panel lights.

Each range is 2 decades wide, with reduced-accuracy extensions both above and below. For example, consider resistance measurement on Range 1 (F igure 3-2). The 2 decades extend from 02.000 , with an automatic decimal-point shift at 02.100 going up (at 020.00, going down) to 200.00 . The range extensions go as far as can be displayed without further decimal-point shifting: upwards to 999.99 , downwards to 00.001 . Leading zeroes before the decimal-point (0) are blanked out.

Test frequencies are within 2% of the front-panel indication. However, for reasons related to rejection of power-line-frequency stray signals that could be picked up by the D UT, thereby causing measurement errors, the actual frequencies are as follows --accurate to :+/-.01% -

catalog number 1657-9700: 1020.0 Hz, 120.00 Hz catalog number 1657-9800: 1000.0 Hz, 100.00 Hz.

4.1.3 Block Diagram.

Figure 4-1.

The block diagram *shows* the microprocessor (uP) in the upper right corner connected by data and address buses to digital circuitry including RAM and ROM memories, status and control latches, and the front-panel display.

Analog circuitry is shown in the lower part of the diagram, where Zx is supplied with a test signal at frequency f from a sinewave generator, driven by a crystal-controlled digital

frequency divider circuit. The front-end amplifier circuit supplies an analog signal that represents 2 impedances alternately: the internal standard, Rs, and the DUT, Zx.

The detector control block provides sampling commands (in 4 phases). The detector is a dual-slope converter, including an integrator and comparator, which converts each phase component of the analog signal proportionally into a period of time. The dual-slope measurement is converted into a digital number by a counter that is gated by this period. From this information and manually selected criteria, the microprocessor calculates the RLC and DQ values subsequently displayed.

4.2 PRINCIPAL FUNCTIONS.

4.2.1 Elementary Measurement Circuit. Figure 4-2.

The measurement technique is shown diagrammatically. A sine-wave generator drives current I_x through the DUT Z_x and standard resistor R_s in series. Two differential amplifiers with the same gain K produce voltages e_1 and e_2 . Simple algebra, some of which is shown in the figure, leads to the expression for the "unknown" impedance:

$$Z_{X} = R_{s} \frac{e_{1}}{e_{2}} .$$

Figure 4-2. Elementary measurement circuit.

4.2.2 Frequency and Time Source.

Figure 4-3.

A necessary standard for accuracy is the frequency of the test signal; and equally important are the generation of 4-phase references for detection and clocks for the microprocessor. Frequency and timing requirements are implemented by derivation from a single very accurate oscillator, operating near 25 MHz. Digital dividers and logic circuitry provide the many clocks and triggers, as well as driving the sine-wave generator described below.

Figure 4-3. Fréquency and timing source. A pushbutton determines the frequency select function. Several clocks and synchronizing pulses as well as the measurement signal f are derived from the accurate time-base signal.

4.2.3 Sine-Wave Generation.

Starting with a digital signal at 256 times the selected test frequency, the sinewave generator provides the test signal that drives a small but essential current through the DUT.

Binary dividers count down from 256 F, providing 128 F, 64 F, 32 F,... 2F, F. This set of signals is used to address a read-only memory which contains a 256-step approximation

Figure 4-4.

to a sine function. The ROM output (as an 8-bit binary number) is converted by a D/A converter to a somewhat "noisy" sine-wave, which is then smoothed by filtering before its use in the measurement of a DUT.

Figure 4-4. Sinewave generator. Given a square wave at 256 f, from preceding dividers, this generator uses a ROM containing the mathematical sine function to form a finely stepped approximation to a sine wave at frequency f. A filter provides smoothing.

Figure 6-1. Front view showing mechanical replaceable parts.

Figure 6-2. Rear view showing mechanical replaceable parts.

MECHANICAL PARTS LIST

FRONT (Figure 6-1)

Item	Description			Mftr Part No.				
	یہ ہے ہے ^{ہور} ان اور میں بین کا کا کا ایک بین کر اور میں کو کا کا بین اور این کا میں خان کا این کا این کا این ک اور این ہے اور این کا	، د خ خ ک سال و ه ه م و و و ی ک گ	مه من ا موجو به مرز چند مد قرر بز	ف کا آب ہور جد باہ جو جو حا کر فر ک جد جہ بی				
1	Foot (4 required) each:	5260- 2051	24655	5260- 2051				
2	Display panel (120 Hz)	1657-7001	24655	1657-7001				
	(or) Display panel (100 Hz)	1657-7002	24655	1657-7002				
3	Switch actuator rod assembly	1657-2 8 10	24655	1657-2810				
4	Adaptor for axial leads (2 supplied)							
	Set of four for replacements	1657-5995	24655	1657- 5995				
5	Test fixture upper assembly, with							
	rounded ends of slots	1657-2200	24655	1657-2200				
	(includes dross tray	1657-7700	24655	1657-7700				
	and foamed plasticpad)	1657-7800	24655	1657-7800				
	Matching test fixture contacts (4 required;							
	included on 1657-4700 board) each:	1686-1940	24655	1686-1940				
5 (alt) Test fixture upper assembly, with	_						
	squared ends of slots	1689-2000	24655	1689-2000				
	(includes dross tray and pad as abov	e)						
Matching test fixture contacts (4 required;								
	included on 1657–4700 board) each:		24655	1689-1015				
6	Push button cap (8 supplied)	5111-0450	71590	B- 315 WT				

REAR (Figure 6-2)

Item	Description	GenRad Part	Mftr	Mftr Part No.
1	Power connector J1	4240-0210	24655	4240- 0210
2	Fuse extractor post F1	5650-0100	75915	342- 004
3	Line voltage switch S2	791 0-0832	82389	11A-1266
4	Cover	1657-8120	24655	1657- 8120
5	Top cover	1657-8060	24655	1657- 8060
6	Bottom shell	1657-8000	24655	1657- 8000

FEDERAL SUPPLY CODE

FOR MANUFACTURERS

From Defense Logistics Agency Microf iche SB 708-42 GSA-FSS H4-2 H_{4-2}

Manufacture

Ref FMC Column in Parts Lists

Code

81030

8.073

8 1 4 3

81741 81831

82273

83003

83330

83667

84971

86420 86577

8668

88419

6,032 91146

91417

6,662 91719 91836

92519

94154

94696 94800

95121 95146

96341 96906

98291

99313

63781

McCov Elettins, Mt. Holl V Sprins, PA 17065 Jones Mfg. Chicago JL 6018 Walkoo Elettins, Los Angeles, CA 90018 Welwyn Innti, Westlake, OH 44145 Schweber Elettins, Westburg, NY 11590 Aerovox, New Bedford, MA 02746 AMP Inc, Harrisburg, PA 17105 Alden Products, Brockton, MA 02413 Allen Bradley, Milwaukee, WI 53204 Litton Inds, Beverly Hills CA 90213 TRW, Lawndale, CA 90260 T. Dallas, TX 75222 00192 00194 00327 00656 00779 01295 TRW, Lawnotale, CA 90260 TI, Dalis, TX 7522 GE, Waynesboro, VA 22980 Amerock, Rockford, IL 61101 Cherry Elctre., Waukegan, IL 60053 Spectrol Elctres, City of Industry, CA 91745 Ferroxube, Saugerite, NY 12477 Feroali Lab, Morton Grove, IL 60053 GE, Schenertagdy, NY 12477 Amphenol, Bragdiviky, IL 60163 RCA, Somerville, NJ 0576 Fastex, Desplains, IL 60016 Carter Ink., Cambridge, MA 02142 GE, Syracuso, NY 13201 Vanguard Elterns, Lingelwood, CA 90302 Grayburne, Yonkers, NY 10701 Transitron Elterns, Waterield, MA 01880 KOI Pyrofilm, Whispany, NJ 07981 Clairez, New York, NY 10001 Arrow Hart, Hartford, CT 06106 Digitronics, Abertson, NY 11507 Motoria, Phoenix, AZ 85003 ITT Elterns, Jaebertson, NY 10501 Corcom, Chicago IL 60539 ITT Elterns, Jaebertson, NY 10501 Gortos IC, Ad Amer, Meirose Pk, IL 60160 Viking Inds, Chatsworth, CA 91311 Barber Colman, Rockford, IL 6, 101 Barber Colman, Rockford, IL 6, 102 Truelove & Maclean, Waterbury, CT 06708 Procision Monolitit, Smita Clars, CA 95050 Clevita, Cleveland, OH 44110 Wichid Barber, Stanbarbow, Wit S3013 Chen Graphik, City of Industry, CA 91744 Richor Pist, Chengan, IL 60645 Boiteber, NLos Angels, CA 90030 Fairchid, Mountain View, CA 94043 Bartok, China, Sautham 14, 11830 Burder, Janasharbow, Wit S3115 Deutsch Fastener, Lox Angels, CA 90032 Amer.Semicond, Arington 01930 01963 02111 02114 02606 02660 03888 03911 04009 04713 04919 05574 05748 05820 06383 06406 06665 06743 06795 06915 06928 07261 07263 07387 07595 07595 07699 07707 07983 07999 08730 09353 09408 09856 10389 1,236 11599 11983 12040 12045 12498 12617 12697 12856 12954 12969 13094 13103 13148 13150 13327 13715 Micrometalia, City of Industry, CA 91744 Dickton Eltras, Scottadie AZ 85252 Unitrode, Watertown, MA 02172 Electrocraft, Hopkins, MN 66343 Thermalloy, Dallas, T3-25734 Vogue Inst., Richmond Hill, NY 11418 Vernitron, Laconia, NH 00246 Solitron Devices, Tappan, NY 10983 Fairchild, San Rafael, CA 84903 Burr Brown, Tucson, AZ 86706 Anadex, Inst., Van Nuys, CA 9, 406 Eletre Controls, Wilton, CT 06897 American Labs, Fullerton, CA 92634 Reiton, Arcadia, CA 91006 TT, W-Paim Reech, F* 732n0 Watkins & Johnson, Jablo Atto, CA 94304 Corbin, Berin, CT 06037 Ormell Dublier, Nawaé, NJ 07101 Corning Glass, Cornina, NY 14830 Aceptan, Easton, PA 18042 Elettrocube, San Gabriel, CA 91776 Rag G Sloan, Sun Valley, CA, 5362 Elette, Hickwile, NY 11802 Litt, Lawrence, MA 08142 Digital Equip, Maynard, MA 01754 14010 14332 14655 14674 147.9 14889 14936 15238

Code

Manufacture

Code

Cutter Hammune. WI 53202 Houston Inst., Bellaire, TX 77401 Ferwal Elctras, Framingham, MA 01701 Sinclair & Rush, St. Louis, MO 63111 Soruce Pine, Mica, Spruce Pine, NC 26777 Intril Diode, Jersey Citr, NJ 07300 Commi Soectra, Farmingnon, MI 8024 Astrolab, Linden, NJ 07410 Sterling Inst., New Hyde Park, NY 11040 Indiana General., Oglesby, IL 6, 344 Deto., Kokomo, IN 48901 Precision Dynamics, Burbank, CA 91504 Amer Micro, Bwites, Burbank, CA 91504 Amer Micro, Bwites, Burbank, CA 91504 Amer Micro, Bwites, Burbank, CA 91504 Amer Micro, Schiller Park, IL 6, 0176 Angstrohm Presm, Hagerstown, MD 2, 740 Singer, Somer Jie, MJ 06676 Zeitex, Concord, CA 94086 New Prod Eng., Wabash, IN 46992 Scanbe, El Monte, CA 94086 New Prod Eng., Wabash, NJ 07936 Cycon, Sunnyvale, CA 94086 New Prod Eng., Wabash, NJ 46992 Scanbe, El Monte, CA 94036 Durant, Waserhow, WI 53094 Zero, Monson, MA 0, 0.57 GE, Gainesville, FL 30501 Eastron, Hwerthill, MJ 07974 KMC, Long Vulley, MJ 07863 Faffir Bearling, New Britian, CT 60650 Faytheon, Fuel, Marton, VI 107863 Faffir Bearling, New Britian, CT 60650 Faytheon, Kunray Hill, NJ 07974 KMC, Long Vulley, MJ 07863 Faffir Bearling, New Britian, CT 60650 Faytheon, Konrowood, MA 0, 02652 Lenox, Fuele, Watchung, NJ 070863 Faffir Bearling, New Britian, CT 60650 Faytheon, Ster, Berlind, RJ 107974 KMC, Long Vulley, MJ 07863 Faffir Bearling, New Britian, CT 6050 Faytheon, Kay, Hull, NJ 07974 KMC, Long Vulley, MJ 071863 Faffir Bearling, New Hittian, CT 6050 Faytheon, Key, Hull, NJ 07863 Faffir Bearling, New Y 12305 GE, Syncoux, Fayther, Hamm, MA 02154 Ge, Gainesule, Fanthridg, MA 01742 Lenox, Fuele, Santhridg, MA 01742 Lenox, Fuele, Santhridg, MA 01743 Ge, Cheveland, OH 44112. EMC Techning, Chenry Hill, NJ 07033 M C Magnetics, Rochester, NJ 03867 Hoffman Elctre, Cased Mach, KH 11747 Omitas Bearling, And 0730 M C Magnetics, Ball, Rocky Hill, CT 06067 HP, Paio Alto, CA 9304 Hermag Magnetics, Toloto, OH 43079 Standford Apoll Eng., Cota Ma 0, 130 M Farmed, Marchal, NJ 1723 Standford Apoll Eng., Cota Ma 0, 13867 Hoffma 16037 16068 16179 16758 16950 16952 17117 17856 18542 19701 20093 20754 2,766 22589 26601 26805 26806 27014 27545 28480 30874 31514 31814 Triridge., Pittsburgh, PA , 623, Jensen, Chicago, IL , 60638 Spectrum Control, Fairview, PA 16415 GE., Owensboro, KY 42301 32001 33173 34141 Ge., Uwensboro, KY 42301 Kcehler, Jahriboro, MA. 0. 1. 7. 6. 2. Semicoa, Costa Mesa, CA. 62626 Silicon Genri, Westminister, CA. 92683 Advanced Micro Devices, Sunnyvale, CA. 94086 Intel, Santa Clara, CA. 9405, Solitron Devices, Jupiter, FL. 33.468 Constanta, Montreal, QUE, CAN 34333 34336 34649 34677 Inter.Jastra Grad. Verol. 3000 Solitron Devices, Jupiter FL 33468 Constanta, Montreal, QUE, CAN Mational Ltd., Montreal, QUE, CAN Marilin, Rockwell, Jamestoue, Molecular, Advin Honeywell, Minneapolis, Mi 46206 Honeywell, Minneapolis, Mi 46383 Honeywell, Minneapolis, Mi 46383 National, Meirose, MA 02176 New Departure-Hyst, Sandusky, OH 44870 Norma Hoffkrose, MA 02176 New Departure-Hyst, Sandusky, OH 44870 Norma Hoffkrose, MA 02176 Rock, New York, NY 10020 Rock, Carrollton, TX 75006 GHZ Devices, Schelmstond, MA 0.824 Micro Networks, Worcester, MA 0.606 Monsanto, Falo Alto, CA 94304 Optie Svistems, Calerona, MJ 08255 Diabio Svistems, Hayward, CA 945455 Diabio Svistems, Javard, CA 945455 Diabio Svistems, Javard, CA 945455 Sangamo Eletter, Springfield, JL 62705 Sateton, Lastran, NY 12110 Tyton, Milwasike, WI 53209 Shalleros, Scient, Alfred, JL 62205 37942 38443 39317 42190 42498 50088 50101 50507 50721 51167 5.663 .642 62676

54715

Code Manufacture Sprague, North Adgms, MA 0, 247 Stimpson, Baybort, NY 11705 Superior Vale, Washington, PA 15301 Thomas & Betts, Elizabeth, NJ 07207 TRW, Cleveland, OH 4417 Torrington, Torrington, CT 06790 Townsend, Braintree, MA 02184 Union Carbidg, New York, NY 10017 United Car, Fett, Biston, MA 02184 Union Carbidg, New York, NY 10017 Ward Leonard, MI, Vernon, NY 10550 Westinghouse, Bioomfield, NJ 07003 Ark-Les Switch, Watertown, MA 02172 Bead Chain, Bridgeport, CT 065005 Belden, Chicago, LL 60644 Bronson, Descon Falls, CT 05 403 Cambridge Thermionic, Carboridge, MA 02138 Canfield, Clifton Forsey, A 24422 Busmann, St. Louis, MO 63107 CTS., Elikhari, INI 46514 Cannon, Los Angeles, CA 90031 Clare, Chicago, LL 60646 Centralab, Milwauke, WI 53212 Continent Screw, New York, NY Coto Coll, Providence, RI 02905 Crescent Box, Philadelphia, PA 19134 Chicago JL 60634 Darnell, Dowley, CA 90241 Electromotive, Willipmantic, CT 06226 Continents Screw, New Sedford, MA 02142 Nytronics, Berkeley Hs, NJ 07922 Dalight, Brooklyn, NY 11237 General Inst., Newark, NJ 07104 Drake, Chicago, LL 60637 Holo-Krome, HartScrud, CT 06110 Eloc Reistor, New York, NY 11207 General Inst., Newark, NJ 07103 JFD Eletter, Bartoeklyn, NY 11801 Carling, Eletter, Hartbord, CT 06110 Elot, Ridderlich, NJ 0703 JFD Eletter, Brooklyn, NY 11213 Sensec, MI 55393 IRC(TRWM, Burlington, IA 5200, Kurz-Katch, David, CT 06510 Johnso, Masec, JMN 55393 IRC(TRWM, Burlington, IA 5200, Kurz-Katch, Dayton, OH 45013 Kurz-Katch, Dayton, MY 1054 Amphenol, Danaudy, CT 06270 Patton Mac 6,637 70106 70109 70417 70485 70563 70563 70611 71126 71450 71468 7,482 71690 7,685 71707 71729 7.623 73559 74193 **74445** 76376 75608 75915 76005 76487 76545 77147 77166 77316 77336 78189 79089 79136 79840 79963 80009 Zierick, MK Kisco, NY 10649 Tektronix, Beaverton, OR 97005 Prestole Fastener, Toledo, OH 43606 Vickers, St. Louis, MO 63166 Lambda, Meville, NY 11746 Soraque, N, Adams, MA 01247 Motorola, Franklin Pk, IL 60131 Formica, Cincinnati, OH 45232 Standard Oil, Lafeyette, IN 47902 Sylvania, New York, NY 10017 Air Eitter, Miwauke, WI 63218 80048 80183 80211 80251 80258 80258 80294 80431 80663 Air Filter, Milwaukee, WI 63218 Hammarlund, New York, NY 10010 Beckman Inst., Fullerton, CA 92834 TRW Ramsey, St Louis, MO 63166

Manufacturer Pure Carbon.,St Marys,PA 15857 Int'i Inst.,Orange,CT 06477 Int'l Inst., Orange, CT 06477 Gravhill, LagGrange, IL 06026 Isolanite, Stirling, NU 07680 Winchester, Qakville, CT 06779 Millary Specifications Joint Army Navy Specifications Int'l Rectifier, El Segundo, CA 90246 Chiespo Lock, Chiesgo, IL 60641 Fitton, Flushing, NY 11354 Ledox, Dayton, OH 45402 Barry Winht, Watertown, MA 02172 Sylvania, Emporium, PA 15834 No.Amer, Philips, Cheshire, CT 06410 IN Patterr & Model, LaPort, IN 46350 Switchcraft, Chiesgo JL 66330 Reeves Holfman, Carlisle, PA 17013 Mitaskee Resistor, Milwaukee, WI 53204 Rotron, Woodstock, NY 1286 In General Magnet, Valoaraiso, IN 46383 Varo, Garland, TX 7500 Hartser, Controls, Artteboro, MA 02703 Milwaukee Resistor, Milwaukee, WI 53204 Rotron, Woodstock, NY 1288 IN General Magnet, Valoaraiso, IN 46383 Varo, Garland, TX 7500 Hartser, Cambide, MA 02142 Victory Eng., Springfield, MJ 0781 Parker Seal, Culver City, CA 90231 Hill, Smith, Brookhyn, NY 11207 Bearing Speci, June, PL 2663 Solar Eletre, Warren, PA 16365 Burroue, Chiesgo, IL 60134 THW, Ogalata, NB 80153 Lehigh Metals, Cambridge, MA 02110 National Eletres, Geneva, IL 60134 THW, Ogalata, JNB 69153 Lehigh Metals, Cambridge, MA 02110 TA Mig., Los Angeles, CA 90039 Prew Metal Prod, Stoneham, MA 02180 RCA, Harrison, NJ 0729 REC, New Rochelle, NY, 080 Cont Eletres, Brooklyn, NY 11222 Outer Hammer, Lincoln, IL 62656 Graf, Sylvania, Jpswitch, MA 0138 Gould Nat Battery, Trenton, NJ 08607 Cont Eletres, Brooklyn, NY 11222 Cutter Hammer, Lincoln, IL 62656 Graf, Wanii, Johangolis, N4 62180 RCA, Harrison, NJ 0729 REC, New Rochelle, NY, 080 Cont Eletres, Brooklyn, NY 11222 Cutter Hammer, Lincoln, IL 62656 Graf, Sylvania, Jpswitch, MA 0138 Gould Nat Battery, Trenton, NJ 08607 Cont Il Dubler, Fudugay Varina, NC 27526 K&G Mr, New York, NY Pottre & Botter, Ch. Reading, PA 19602 Continenal Wire, York, PA 17405 Cannon, Salawaka, NJ 46544 Westinghousa, Botton, A 02119 Uhied Tangha, Ma 0139 Contennetal Wire, York, PA 17405 Cannon, Salawaka, JM 46544 8,860 Johanson., Boonton, NJ 0700 Harris., Melbourne, FL 32901 August Bros., Attleboro, MA 02703 Chandler, Wetherefield CT 06109 Augst Bros. Attesporo, MA 02703 Chandier, Wuharstrial AT, 06109 Dale Eittrs, Columbus, NE 66801 Eleo, Willow Grove, PA 19900 General Inst. Dalls TX 76220 Kings Eittrs, Tuckshoe, MY 11233 Mephisto Tool, Hudson, NY 12534 Honerwell, Freeport, IL 61032 Electra Insul, Woodside, NY 11337 Edgerton Germeshussen, Boston, MA 02115 IMC Magnetics, Westbury, NY 1.591 Hudson Lamp, Kearny, NJ 07032 Sylvania, Woburd, AA 01801 Amer Eletrous Labs, Lansdale, PA 19446 R&C Mig, Ramey, PA .667, Cramer, New, York, NY 10013 Raytheon, Quincy, MA 02160 Raytow, Brews, Libox, ston, NJ 07039 Weston, Archibald, PA 18403 Tél Labs, Manchester, NH 03102 Weston, Archibald, PA 18403 Tel Labs, Manchester, NH 03102 Dickson, Chicago, LL 60630 Magnecraft, Chicago, LL 60630 Attas Ind, Brookine, NH 03033 Garde, Dumberland, RI 02864 Ouliny Comp. SX Marys, PA 15857 Alto Elctrcs, Lawrence, MA 0, 843 Continental Conn, Woodside, NY 11377 Vitramon, Briogeopt, CT 06601 Gordos, Bloomfreid, NJ 07003 Methode, Rolling Meadow, L cooco Amer Brass, Torrington, CT 06790 Weckesser, Chicago, LL 60046 Aerovox H i Q, Olean, NY 14760 Microwave Assoc, Burlington, MA 01801 Military Standards Microwave Assoc. Burlington, MA 01801 Military Standards Linemaster Switch, Woodstock, CT 06281 Sealecto, Mamaroneck, NY 10544 Compar, Burlingame, CA 94010 North Hills, Glen Cove, NY 11542 Protective Course, Suffaho, NY 14207 Metavac, Fluthing, NY 14207 Metavac, Fluthing, NY 14207 Metavac, Fluthing, NY 14303 Atlee, Winchester, MA 01890 Delevan, E. Aurora, NY 14052 Renbrandt, Boston, MA 02118 Centralab, Milvsukee, WI 53201

S-4 PARTS & DIAGRAMS

JANUARY 1978